If #log_4x=2.5# and #log_y125=-3/2#, what is the numerical value of #x/y# in simplest form?

1 Answer
Apr 14, 2016

I found: #x/y=800#

Explanation:

We can first write (using the definition of log):

#x=4^(2.5)=4^(5/2)=root2(4^5)=32#
and:
#125=y^(-3/2)#
or (raising both sides to #-2/3#):
#125^(-2/3)=y^((-3/2)(-2/3))#
#y=125^(-2/3)#

Then we divide to find:

#x/y=32/125^(-2/3)#

or rearranging:

#x/y=32*125^(2/3)#
#x/y=32*root3(125^2)#
#x/y=32*25#
#x/y=800#