If m,n are the roots of the equation ax^2+bx+c then find the roots of the equation cx^2+bx+a?
2 Answers
Answer:-
#" "color(red)(1/n)# and#color(red)(1/m#
Explanation:
If the roots of an equation
#color(red)(ax^2+bx+c=0# is#color(blue)(alpha,beta# , then we can write as per rule that
#color(red)(alpha+beta)=-b/a# #color(red)(alpha cdot beta)=c/a# As per given condition, we can write that
#color(red)(m+n)=-b/a# #color(red)(m cdot n)=c/a# We will determine some values now for further use.
#color(red)(-b/c)=(-b/a)/(c/a)=(m+n)/(m cdot n)# #color(red)(a/c)=1/(m cdot n# If the roots of the equation
#color(red)(cx^2+bx+a=0# is#color(blue)(alpha,beta# , then,
#color(red)(alpha+beta)=-b/c=(m+n)/(m cdot n)" "...(1)# #color(red)(alpha cdot beta)=a/c=1/(m cdot n#
#color(red)(alpha-beta)#
#=sqrt((alpha+beta)^2-4 cdot alpha cdot beta)#
#=sqrt(((m+n)/(m cdot n))^2-4 /(m cdot n))#
#=(m-n)/(m cdot n)" "...(2)#
- From
#(1)" & " (2)# ,
#color(red)(alpha)=((m+n)/(m cdot n)+(m-n)/(m cdot n))/2=1/n# #color(red)(beta)=((m+n)/(m cdot n)-(m-n)/(m cdot n))/2=1/m# Hope this helps....
Thank you...
Explanation:
Here's another in my series of pithy alternatives to overlong featured answers.
We're given
It's pretty much implied
Dividing by
So,
If