If #(sec(t) - 1)/(sec(t) + 1) = (A - cos(t))/(A + cos(t))#, then what does A =?

I tried solving it but I get stuck every time, can someone please help?

1 Answer
Mar 27, 2018

#A = 1#

Explanation:

Given:

#(sec(t) - 1)/(sec(t) + 1) = (A - cos(t))/(A + cos(t))#

Multiply the left side by 1 in the form of #cos(t)/cos(t)#:

#cos(t)/cos(t)(sec(t) - 1)/(sec(t) + 1) = (A - cos(t))/(A + cos(t))#

Distribute the cosine function over the numerator and the denominator:

#(cos(t)sec(t) - cos(t))/(cos(t)sec(t) + cos(t)) = (A - cos(t))/(A + cos(t))#

We know that #cos(t)sec(t) = 1#:

#(1 - cos(t))/(1 + cos(t)) = (A - cos(t))/(A + cos(t))#

By matching terms we observe that #A = 1#