If #sin(pi/5) = y#, what is #csc((4pi)/5)#?

1 Answer
Mar 26, 2017

#1/y#

Explanation:

#sin(pi-x)=sinx#, therefore #sin((4pi)/5)=sin(pi/5)# since #(5pi)/5-pi/5=(4pi)/5#.

#sin((4pi)/5)=sin(pi/5)# and #sin(pi/5)=y# so #sin((4pi)/5)=y#.

#cscx# is defined as #1/sinx# so #csc((4pi)/5)=1/sin((4pi)/5)#.

#sin((4pi)/5)=y# so #1/sin((4pi)/5)=1/y#, meaning that #csc((4pi)/5)=1/y#