If sum of #p# terms of an arithmetic sequence is #q# and sum of #q# terms is #p#, then prove that sum #(p+q)# terms is #-(p+q)#. Also find the sum of first #(p-q)# terms (#p>q#)?

1 Answer
Mar 26, 2017

For the First Part, see the following Explanation.

# (2) : S_(p-q)={(p+2q)(p-q)}/p.#

Explanation:

In the Usual Notation, we have,

#S_p=q rArr p/2{2a+(p-1)d}=q.#

#:. pa+p(p-1)d/2=q, or,#

#pa+(p^2-p)d/2=q..........(1).#

#S_q=p rArr q/2{2a+(q-1)d}=p.#

#:. qa+q(q-1)d/2=p, or,#

#qa+(q^2-q)d/2=p...........(2).#

#:. (1)-(2) rArr (p-q)a+{(p^2-q^2)-(p-q)}d/2=q-p.#

#-:"ing by "(p-q)!=0, a+{(p+q)-1}d/2=-1...(star)#

#"Therefore, the Desired Sum, "S_(p+q)#

#=(p+q)/2{2a+(p+q-1)d}#

#=(p+q){a+(p+q-1)d/2}#

#=(p+q)(-1)...[because, (star)] =-(p+q)#.

This proves the Result.

Next, to find #S_(p-q),# we have to find #a, &, d# from #(1), &, (2).

Modifying #(1)" by "-:"ing it by "p," we get, "a+(p-1)d/2=q/p...(1').#

#(star)-(1) rArr q(d/2)=-1-q/p=-(p+q)/p.#

#:. d=-(2(p+q))/(qp).#

Then, by #(1'), a=q/p-(p-1)d/2=q/p-(p-1){-(p+q)/(pq)}#

#=1/(pq){q^2+(p-1)(p+q)}=1/(pq)(q^2+p^2+pq-p-q).#

Thus, with, #a=1/(pq)(q^2+p^2+qp-q-p), &, d=-2/(pq)(q+p),#

#S_(p-q)=(p-q)/2{2a+(p-q-1)d}#

#=(p-q)/2[2/(pq)(q^2+p^2+qp-q-p)+(p-q-1){-2/(pq)(q+p)}]#

#=((p-q)/2)(2/(pq)){q^2+p^2+qp-q-p+(1+q-p)(q+p)}#

#=(p-q)/(pq){q^2+p^2+qp-1(q+p)+1(q+p)+(q^2-p^2)}#

#=(p-q)/(pq)(2q^2+qp)#

#:. S_(p-q)={(p+2q)(p-q)}/p.#

Enjoy Maths.!