If # tan(alpha+beta)=a+b# and # tan(alpha-beta)=a-b# then show that #atanalpha-btanbeta=a^2-b^2#?

1 Answer
Jul 20, 2017

If # tan(alpha+beta)=a+b# and # tan(alpha-beta)=a-b# then show that #atanalpha-btanbeta=a^2-b^2#

given

# tan(alpha+beta)=a+b#

#=>( tanalpha+tanbeta)/(1-tanalphatanbeta)=a+b#

#=>( tanalpha+tanbeta)/(a+b)=1-tanalphatanbeta........[1]#

Again

# tan(alpha-beta)=a-b#

#=>( tanalpha-tanbeta)/(1+tanalphatanbeta)=a+b#

#=>( tanalpha-tanbeta)/(a-b)=1+tanalphatanbeta........[2]#

Adding [1] and [2] we get

#=>( tanalpha+tanbeta)/(a+b)+( tanalpha-tanbeta)/(a-b)=2#

#=>(a-b)( tanalpha+tanbeta)+(a+b)( tanalpha-tanbeta)=2(a^2-b^2)#

#=>a( tanalpha+tanbeta+ tanalpha-tanbeta)-b(tanalpha+tanbeta-tanalpha+tanbeta)=2(a^2-b^2)#

#=>2a tanalpha-2btanbeta=2(a^2-b^2)#

#=>a tanalpha-btanbeta=a^2-b^2#

proved