If the equation #x^2-kx+1=0# has no real roots the what is true for k from the following and how ? A k>-2 B. k<2 C. -2<k<2 D. None

1 Answer
Feb 3, 2018

The answer is option #=(C) -2 < k < 2 #

Explanation:

For the quadratic equation #x^2-kx+1=0#

To have no real roots, the discriminant #Delta<0#

#a=1#

#b=-k#

#c=1#

Therefore, the discriminant is

#Delta=b^2-4*a*c=(-k)^2-4*1*1=k^2-4#

So,

#k^2-4<0#

#(k+2)(k-2)<0#

Make a sign chart to solve this inequality

#color(white)(aaaa)##k##color(white)(aaaa)##-oo##color(white)(aaaa)##-2##color(white)(aaaa)##+2##color(white)(aaaa)##+oo#

#color(white)(aaaa)##k+2##color(white)(aaaaa)##-##color(white)(aaaaa)##+##color(white)(aaaa)##+#

#color(white)(aaaa)##k-2##color(white)(aaaaa)##-##color(white)(aaaaa)##-##color(white)(aaaa)##+#

#color(white)(aaaa)##Delta##color(white)(aaaaaaaa)##+##color(white)(aaaaa)##-##color(white)(aaaa)##+#

Finally,

#Delta<0#, when #k in (-2,+2)#