If #u= (1-2xy+y^2)^-1/2# , then show that #x(partial u)/(partial x)-y(partial u)/(partial y)= y^2u^3# ?
1 Answer
# x(partial u)/(partial x) - y (partial u)/(partial y) = 4y^2u^2 != y^2u^3#
Indicating an error in the PDE of the question.
Explanation:
We have:
# u = ((1-2xy+y^2)^(-1))/2 = 1/(2(1-2xy+y^2)) #
and we seek to validate that
# x(partial u)/(partial x) - y (partial u)/(partial y) = y^2u^3#
(In other words we are validating that a solution to the given PDE is
# u_x = (partial u)/(partial x) #
# \ \ \ \= ((-1)(1-2xy+y^2)^(-2)(-2y))/2 #
# \ \ \ \= (y)/(1-2xy+y^2)^(2) #
And
# u_y = (partial u)/(partial y) #
# \ \ \ \= ((-1)(1-2xy+y^2)^(-2)(-2x+2y))/2 #
# \ \ \ \= (x-y)/(1-2xy+y^2)^(2) #
Next we compute the LHS of the desired expression:
# LHS = x(partial u)/(partial x) - y (partial u)/(partial y) #
# \ \ \ \ \ \ \ \ = x((y)/(1-2xy+y^2)^(2)) - y ((x-y)/(1-2xy+y^2)^(2)) #
# \ \ \ \ \ \ \ \ = (xy-yx+y^2)/(1-2xy+y^2)^(2) #
# \ \ \ \ \ \ \ \ = (y^2)/(1-2xy+y^2)^(2) #
Using
So that
# LHS = (y^2) * (2u)^2 #
# \ \ \ \ \ \ \ \ = 4y^2u^2 #
# \ \ \ \ \ \ \ \ != RHS #
Indicating an error in the PDE of the question.