If #y=e^(msin^-1x)#, then show that #(1-x^2)y_2-xy_1=m^2y#?

2 Answers
May 20, 2017

To proceed we will need some standard Calculus results:

# d/dx e^(ax) = ae^(ax) #
# d/dx sin^(-1)x = 1/sqrt(1-x^2) #

Now we have:

# y = e^(msin^(-1)x) #

If we apply the chain rule then we get:

# y' = m \ e^(msin^(-1)x) * 1/sqrt(1-x^2) #
# \ \ \ \ = m \ e^(msin^(-1)x)/sqrt(1-x^2) #

And differentiating again and applying the quotient rule, along with the chain rule, we get:

# y'' = { (sqrt(1-x^2))(d/dxme^(msin^(-1)x)) - (me^(msin^(-1)x))(d/dxsqrt(1-x^2)) }/ (sqrt(1-x^2))^2 #

# \ \ \ \ = { (sqrt(1-x^2))(m^2e^(msin^(-1)x)/sqrt(1-x^2)) - (me^(msin^(-1)x))(1/2(1-x^2)^(-1/2)*(-2x)) }/ (sqrt(1-x^2))^2 #

# \ \ \ \ = { m^2e^(msin^(-1)x) + (mxe^(msin^(-1)x))/(sqrt(1-x^2)) }/ (1-x^2) #

# \ \ \ \ = { m^2y + xy' }/ (1-x^2) #

# :. (1-x^2)y'' = m^2y + xy' #

# :. (1-x^2)y'' -xy' = m^2y # QED

May 20, 2017

See the Explanation.

Explanation:

#y=e^(msin^-1x.#

Using the Chain Rule, we get,

#rArr y_1=dy/dx=(e^(msin^-1x))*d/dx(msin^-1x),#

#=y*{m/sqrt(1-x^2)},#

# rArr y_1*sqrt(1-x^2)=my.#

Squaring, #y_1^2(1-x^2)=m^2y^2#

Rediff,ing w.r.t. #x#, using the Product Rule and Chain Rule,

#y_1^2*d/dx(1-x^2)+(1-x^2)*d/dx(y_1^2)=m^2d/dx(y^2),#

# rArr y_1^2(-2x)+(1-x^2)(2y_1)*d/dx(y_1)=m^2(2y)*d/dx(y),#

# rArr y_1^2(-2x)+(1-x^2)(2y_1)(y_2)=m^2(2y)(y_1),#

Dividing by #2y_1!=0,# we get,

#(1-x^2)y_2-xy_1=m^2y.#

Hence, the Proof.

Enjoy Maths.!