If y=e^(mtan^(-1)x) y=emtan−1x show that (1+x^2)y_(n+1)+(2nx-m)y_n+n(n-1)y_(n-1)=0 (1+x2)yn+1+(2nx−m)yn+n(n−1)yn−1=0?
1 Answer
Induction Proof - Hypothesis
We seek to prove that:
If
y=e^(mtan^(-1)x) y=emtan−1x , then:
(1+x^2)y_(n+1)+(2nx-m)y_n+n(n-1)y_(n-1)=0 (1+x2)yn+1+(2nx−m)yn+n(n−1)yn−1=0 ..... [A]
Where
Induction Proof - Base case:
Differentiating wrt
y_1 = e^(mtan^(-1)x) d/dx (mtan^(-1)x)y1=emtan−1xddx(mtan−1x)
\ \ \ = (m \ e^(mtan^(-1)x) )/(1+x^2)
y_2 = m \ ( (1+x^2)(m \ (e^(mtan^(-1)x) )/(1+x^2)) - (2x)(e^(mtan^(-1)x)) ) / (1+x^2)^2
\ \ \ = (m(m-2x)e^(mtan^(-1)x) ) / (1+x^2)^2
And , when
LHS = (1+x^2)y_(1)+(2x-m)y_1+1(0)y_(0)
\ \ \ \ \ \ \ \ = (1+x^2)((m(m-2x)e^(mtan^(-1)x) ) / (1+x^2)^2 )+(2x-m)((m \ e^(mtan^(-1)x) )/(1+x^2))
\ \ \ \ \ \ \ \ = ((m(m-2x)+m(2x-m))/(1+x^2)) \ e^(mtan^(-1)x
\ \ \ \ \ \ \ \ = 0
And
Induction Proof - General Case
Now, Let us assume that the given result [A] is true when
(1+x^2)y_(k+1)+(2kx-m)y_k+k(k-1)y_(k-1)=0 ..... [B]
Now, let us differentiate the expression [B] using the product rule:
(1+x^2)y_(k+1)+(2kx-m)y_k+k(k-1)y_(k-1)=0
:. (1+x^2)y_(k+2) + (2x)y_(k+1) + (2kx-m)y_(k+1) + (2k)y_k + k(k-1)y_(k)
:. (1+x^2)y_(k+2) + (2x + 2kx-m)y_(k+1) + (2k + k(k-1))y_(k)
:. (1+x^2)y_(k+2) + (2(k+1)x -m)y_(k+1) + k(k+1)y_(k)
:. (1+x^2)y_((k+1)+1) + (2(k+1)x -m)y_(k+1) + (k+1)((k+1)-1)y_((k+1)-1)
Which is the given expression [A], with
Induction Proof - Summary
So, we have shown that if the given result [A] is true for
Induction Proof - Conclusion
Then, by the process of mathematical induction the given result [A] is true for
Hence we have:
(1+x^2)y_(n+1)+(2nx-m)y_n+n(n-1)y_(n-1)=0 \ \ \ \ QED