If #z+1/z=1#, find #z^3#, and then #z^1000+1/z^1000#?
2 Answers
Aug 9, 2018
Please see the explanation below.
Explanation:
Let
Therefore,
And
Avcoording to Demoivre' s Theorem
Aug 9, 2018
Explanation:
Given:
#z+1/z = 1#
Note that:
#z^3+1 = (z+1)(z^2-z+1) = (z+1)z(z+1/z-1) = 0#
So:
#z^3 = -1#
So:
#z^1000+1/z^1000 = z^(3*333+1)+1/z^(3*333+1)#
#color(white)(z^1000+1/z^1000) = (-1)^333(z+1/z)#
#color(white)(z^1000+1/z^1000) = -(z+1/z)#
#color(white)(z^1000+1/z^1000) = -1#