If z=e^(xy^2),x=tcost,y=tsint,compute dz/dt at t=π/2?

1 Answer
Feb 20, 2018

#- (pi/2)^3#

Explanation:

#z=e^(xy^2)#

#dz/dt= (del z)/(delx) dx/dt + (delz)/(dely) dy/dt#

#=e^(xy^2) (y^2) (cost -t sint) +e^(xy^2) (x) (2y dy/dt) ( sint +t cost)#

#=e^(xy^2) (y^2) (cost - tsin t)+e^(xy^2) 2xy (sint +tcost)^2#

At #t=pi/2, cost =0, sint =1, x=0 and y= pi/2#

Therefore #dz/dt =(pi/2)^2 (-pi/2)= -(pi/2)^3#