In a 2.0 liters container are 3.2 moles of IBr. In the 40% of equilibrium the IBr is already disassociated. Determine for the reaction a. The moles de I2, Br2 and IBr on equilibrium? b. The value for the equilibrium constant?

#I_2 (g) + Br_2 (g) rightleftharpoons# #2IBr (g)#

1 Answer
May 2, 2018

a. At equilibrium, there are 0.64 mol #"Br"_2#, 0.64 mol #"I"_2#, and 1.9 mol #"IBr"#.
b. #K = 36#

Explanation:

The chemical equation is

# "I"_2 + "Br"_2 ⇌ "2IBr"#

Step 1. Calculate the initial concentration of #"IBr"#

#["IBr"]_0 = "3.2 mol"/"2.0 L" = "1.6 mol/L"#

Step 2. Calculate the equilibrium concentrations

We can set up an ICE table as we continue solving this problem.

#color(white)(mmmmmmm)"I"_2 + "Br"_2 ⇌ "2IBr"#
#"I/mol·L"^"-1": color(white)(mm)0 color(white)(mm)0color(white)(mmm)1.6#
#"C/mol·L"^"-1":color(white)(m)"+"x color(white)(m)"+"xcolor(white)(mmll)"-2"x#
#"E/mol·L"^"-1": color(white)(mll)xcolor(white)(mm)xcolor(white)(mml)"1.6-2"x#

At equilibrium, the #"IBr"# is 40 % dissociated, so 60 % remains.

The equilibrium concentration of #"IBr"# is

#["IBr"] = "0.60 × 1.6 mol/L = 0.96 mol/L"#

But

#["IBr"] = ("1.6-2"x)color(white)(l) "mol/L"#

#0.96 = 1.6-2x#

#2x = 1.6-0.96 = 0.64#

#x = 0.64/2 = 0.32#

#["I"_2] = ["Br"_2] = xcolor(white)(l)"mol/L = 0.32 mol/L"#

#["IBr"] = "0.96 mol/L"#

Step 3. Calculate the moles of each compound at equilibrium

#n_text(I₂) = 2.0 color(red)(cancel(color(black)("L I"_2))) × "0.32 mol I"_2/(1 color(red)(cancel(color(black)("L I"_2)))) = "0.64 mol I"_2#

#n_text(Br₂) = 2.0 color(red)(cancel(color(black)("L Br"_2))) × "0.32 mol Br"_2/(1 color(red)(cancel(color(black)("L Br"_2)))) = "0.64 mol Br"_2#

#n_text(IBr) = 2.0 color(red)(cancel(color(black)("L IBr"))) × "0.96 mol IBr"/(1 color(red)(cancel(color(black)("L IBr")))) = "1.9 mol IBr"#

Step 5. Calculate the volume of the equilibrium constant

The equilibrium constant expression is

#K = ["IBr"]^2/(["I"_2]["Br"_2])#

#K =1.9^2/(0.32 × 0.32) = 36#