In how many ways can you rearrange the letters A, B, C, D, E?

2 Answers

Answer:

#color(chocolate)(5! = 1 * 2 * 3 * 4 * 5 = 120 " ways"#

Explanation:

http://www.statisticslectures.com/topics/permutations/

#"Formula for permutation " nPr = (n! )/ ((n-r)!)#

#"Given " n = 5, (A, B, C, D, E) " " & " " r = 5, (A, B, C, D, E)#

#:. nPr = nPn = (n!) / ((n - n)! )= (n!) / 1 = 5! #

https://www.thoughtco.com/why-does-zero-factorial-equal-one-3126598

https://in.answers.yahoo.com/question/index?qid=20130723054015AAgl5E1

#color(chocolate)(5! = 1 * 2 * 3 * 4 * 5 = 120 " ways"#

Answer:

#120#

Explanation:

The total number of linear arrangements obtained from #n=5# different letters #A, B, C, D, E# is given as

#\ ^nP_n#

#=\ ^5P_5#

#=5!#

#=5\times 4\times 3\times 2\times 1#

#=120#