In triangle #ABC#, #AB=15, BC=12# and #CA=8#. What are the angles of the triangle in order from smallest to largest?

1 Answer
Jul 9, 2016

#B~~32.11^@#,
#A~~52.82^@#,
#C~~95.07^@#

Explanation:

self drawn

The above figure represents the #Delta ABC#,where

  • #a= BC =12#

  • #b= CA =8#

  • #c= AB =15#

Smallest angle B is to be opposite of smallest side b.
By properties of triangle

#cosB=(c^2+a^2-b^2)/(2ca)=(15^2+12^2-8^2)/(2xx15xx12)#

#=305/360=0.847#

#B=cos^-1(0.847)~~32.11^@#

#cosA=(c^2+b^2-a^2)/(2cb)=(15^2+8^2-12^2)/(2xx15xx8)#

#=145/240=0.604#

#A=cos^-1(0.604)~~52.82^@#

#cosC=(a^2+b^2-c^2)/(2ab)=(12^2+8^2-15^2)/(2xx12xx8)#

#=-17/240=-0.0885#

#C=cos^-1(-0.0885)~~95.07^@#