Integral of (2cosx+7)/(4-sinx) dx ?

1 Answer
Jun 11, 2018

The answer is #=14/sqrt15arctan((4tan(x/2)-1)/sqrt15)-2ln(4-sinx)+C#

Explanation:

The integral is

#I=int((2cosx+7)dx)/(4-sinx)=int(2cosxdx)/(4-sinx)+int(7dx)/(4-sinx)#

#=I_1+I_2#

To calculate #I_1#, perform the substitution

#u=4-sinx#, #=>#, #du=-cosxdx#

Therefore,

#I_1=2int(cosxdx)/(4-sinx)=-2int(du)/(u)#

#=-2ln(u)#

#=-2ln(4-sinx)#

To calculate #I_2#, apply the Weierstrass substitution,

#sinx=(2tan(x/2))/(1+tan^2(x/2))#

Therefore,

#I_2=int(7dx)/(4-sinx)=7int(dx)/(4-((2tan(x/2))/(1+tan^2(x/2))))#

#=7int(1+tan^2(x/2)dx)/(4+4tan^2(x/2)-2tan(x/2))#

Let #t=tan(x/2)#, #=>#, #dt=1/2sec^2(x/2)dx=1/2(1+tan^2(x/2))dx=1/2(1+t^2)dx#

Therefore,

#I_2=14int(dt)/(4t^2-2t+4)=7int(dt)/(2t^2-t+2)#

Complete the square in the denominator

#2t^2-t+2=2(t^2-t/2+1)=2(t^2-t/2+1/16+1-1/16)#

#=2((t-1/4)^2+15/16)#

#I_2=7/2int(dt)/((t-1/4)^2+15/16)#

#=7/2int(dt)/((sqrt2t-1/2^(3/2))^2+15/8)#

Let #u=(4t-1)/sqrt15#, #=>#, #du=4/sqrt15dt#

#I_2=14int(sqrt15du)/(15u^2+15)#

#=14/sqrt15int(du)/(u^2+1)#

#=14/sqrt15arctan(u)#

#=14/sqrt15arctan((4t-1)/sqrt15)#

#=14/sqrt15arctan((4tan(x/2)-1)/sqrt15)#

Finally,

#I=14/sqrt15arctan((4tan(x/2)-1)/sqrt15)-2ln(4-sinx)+C#