Integrate #(3x^2+cosx)/(x^3+sinx)#?

1 Answer
May 24, 2017

# int \ (3x^2+cosx)/(x^3+sin x) \ dx = ln|x^3+sin x| + C #

Explanation:

We want to find:

# I = int \ (3x^2+cosx)/(x^3+sin x) \ dx #

We can integral of the expression using a simple substitution: Let

# u = x^3+sin x => (du)/dx = 3x^2 + cosx #

Substituting into the integral we get:

# I = int \ 1/u \ du #

Which we can now integrate to get:

# I = ln|u| + C #

And restoring the substitution we get:

# I = ln|x^3+sin x| + C #