Integrate #(3x^2+cosx)/(x^3+sinx)#?
1 Answer
May 24, 2017
Explanation:
We want to find:
# I = int \ (3x^2+cosx)/(x^3+sin x) \ dx #
We can integral of the expression using a simple substitution: Let
# u = x^3+sin x => (du)/dx = 3x^2 + cosx #
Substituting into the integral we get:
# I = int \ 1/u \ du #
Which we can now integrate to get:
# I = ln|u| + C #
And restoring the substitution we get:
# I = ln|x^3+sin x| + C #