Integrate #\int {sin(2x)}/{sinx}dx# ?

2 Answers
Jun 21, 2018

# int \ sin(2x)/sinx \ dx =2 sinx + C #

Explanation:

We seek:

# I =int \ sin(2x)/sinx \ dx #

Using the double angle formula:

# sin 2x -= 2sinxcosx #

We can write:

# I =int \ (2sinxcosx)/sinx \ dx #

# \ \ =2 \ int \ cosx \ dx #

# \ \ =2 sinx + C #

Jun 21, 2018

#I=2sinx+c#

Explanation:

We know that,

#color(blue)((1)sin2theta= 2sinthetacostheta#

Here,

#I=int(sin2x)/sinx dx...tocolor(blue)( Apply(1)#

#=int(2sinxcosx)/sinx dx#

#=int2cosx dx#

#I=2sinx+c#