What is #int_0^pi\ x/(1+sin^2(x))#?

1 Answer
Apr 4, 2018

#int_0^(pi) x/(1+(sinx)^2)*dx=(pi^2sqrt2)/4#

Explanation:

#I=int_0^(pi) x/(1+(sinx)^2)*dx#

After using #x=pi-y# and #dx=-dy# transforms, #I# became

#I=int_(pi)^0 (pi-y)/(1+(sin(pi-y))^2)*(-dy)#

=#int_(pi)^0 (pi-y)/(1+(siny)^2)*(-dy)#

=#int_0^(pi) (pi-y)/(1+(siny)^2)*dy#

=#int_0^(pi) (pi-x)/(1+(sinx)^2)*dx#

After summing 2 integrals,

#2I=int_0^(pi) x/(1+(sinx)^2)*dx#+#int_0^(pi) (pi-x)/(1+(sinx)^2)*dx#

=#piint_0^(pi) (dx)/(1+(sinx)^2)#

=#piint_0^(pi) ((cscx)^2*dx)/((cscx)^2+1)#

=#piint_0^(pi) ((cscx)^2*dx)/((cotx)^2+2)#

=#piint_(pi)^0 (-(cscx)^2*dx)/((cotx)^2+2)#

After using #z=cotx# and #dz=-(cscx)^2*dx# transforms, it became

#2I=piint_(-oo)^oo (dz)/(z^2+2)#

=#(pisqrt2)/2*[arctan(z/sqrt2)]_(-oo)^oo#

=#(pi^2sqrt2)/2#

Thus, #I=(pi^2sqrt2)/4#