Integration by partial fractions #int (6x^2 + 13x + 6)/[(x+2)(x+1)^2]dx# ?

1 Answer
Jun 28, 2018

#int(6x^2+13x+6)/((x+2)(x+1)^2)dx=4ln|x+4|+2ln|x+1|+1/(x+1)+c#

Explanation:

Here,

#I=int(6x^2+13x+6)/((x+2)(x+1)^2)dx#

To obtain Partial Fractions :

#(6x^2+13x+6)/((x+2)(x+1)^2)=A/(x+2)+B/(x+1)+C/(x+1)^2#

#6x^2+13x+6#=#A(x^2+2x+1)+B(x^2+3x+2)+C(x+2)#

#6x^2+13x+6#=#x^2(A+B)+x(2A+3B+C)+A+2B+2C#

comparing coefficient of #x^2 ,x ,and# constant term :

#color(red)(A+B=6..............to(1)#

#color(red)(2A+3B+C=13...to (2) #

#color(red)(A+2B+2C=6....to(3)#

Taking , #equn.(2)xx2+(3)xx(-1)# ,we get

#color(white)(.)4A+6B+2C=26#

#ul(-A-2B-2C=-6#

#color(red)(3A+4B=20...........to(4)#

Again taking , #equn.(4)+(1)xx(-1)# ,we get

#color(white)(..)3A+4B=20#

#ul(-4A-4B=-24#

#-A=-4 =>color(blue)(A=4#

From #(1) , # #4+B=6=>color(blue)(B=2#

From #(3) ,# #4+2(2)+2C=6=>color(blue)(C=-1#

So,

#I=int[4/(x+2)+2/(x+1)-1/(x+1)^2]dx#

#=>I=4int1/(x+2)dx+2int1/(x+1)dx-int(x+1)^(-2) dx#

#=>I=4ln|x+2|+2ln|x+1|-(x+1)^(-2+1)/(-2+1)+c#

#=>I=4ln|x+4|+2ln|x+1|+1/(x+1)+c#