Integration of cos(logx)dx?

1 Answer
Apr 20, 2018

#intcos(lnx)dx=1/2(xsin(lnx)+xcos(lnx))+C#

Explanation:

So, we have

#intcos(lnx)dx#

We'll make the following substitution:

#u=lnx#

#du=dx/x#

#xdu=dx#

Let's try to get #x# in terms of #u#:

#e^u=e^lnx#

#e^u=x#

Thus,

#e^udu=dx# and we get

#inte^ucosudu#. We now use Integration by Parts twice, making the following selections:

#w=e^u#
#dw=e^udu#
#dv=cosudu#
#v=sinu#

Applying the formula #uw-intvdw#:

#inte^ucosudu=e^usinu-inte^usinudu#

For #inte^usinudu#:

#w=e^u#
#dw=e^udu#
#dv=sinudu#
#v=-cosu#

Thus,
#inte^usinudu=-e^ucosu+inte^ucosudu#

We see our original integral shows back up:

#inte^ucosudu=e^usinu-(-e^ucosu+inte^ucosudu)#

#inte^ucosudu=e^usinu+e^ucosu-inte^ucosu#

#2inte^ucosudu=e^usinu+e^ucosu#

#inte^ucosudu=1/2(e^usinu+e^ucosu)+C# (Don't forget the constant of integration)

Recalling that #u=lnx, e^u=x#:

#intcos(lnx)dx=1/2(xsin(lnx)+xcos(lnx))+C#