#int_0^pilog(sin^2 x) dx=0#?

1 Answer
Apr 12, 2018

#I=-ln(4)pi#

Explanation:

We want to solve

#I=int_0^piln(sin^2(x))dx#

By the properties of logarithms

#I=2int_0^piln(sin(x))dx#

Use the trig identity

#color(blue)(sin(x)=2sin(x/2)cos(x/2)#

Thus

#I=2int_0^piln(2sin(x/2)cos(x/2))dx#

#=2int_0^piln(2)dx+2int_0^piln(sin(x/2))dx+2int_0^piln(cos(x/2))dx#

#=ln(4)pi+2int_0^piln(sin(x/2))dx+2int_0^piln(cos(x/2))dx#

Make a substitution #color(red)(u=x/2=>du=1/2dx#
#color(red)(x=0=>u=0# and #color(red)(x=pi=>u=pi/2#

#I=ln(4)pi+4int_0^(pi/2) ln(sin(u))du+4int_0^(pi/2) ln(cos(u))du#

Make a substitution #color(red)(u=-pi/2-s=>du=-ds#
#color(red)(u=0=>s=-pi/2# and #color(red)(u=pi/2=>s=-pi#

#I=ln(4)pi+4int_0^(pi/2) ln(sin(u))du-4int_(-pi/2)^(-pi) ln(-sin(s))ds#

#color(white)(I)=ln(4)pi+4int_0^(pi/2) ln(sin(u))du-4int_(-pi/2)^(-pi) ln(sin(-s))ds#

Make a substitution #color(red)(w=-s=>dw=-ds#
#color(red)(s=-pi/2=>w=pi/2# and #color(red)(s=-pi=>w=pi#

#I=ln(4)pi+4int_0^(pi/2) ln(sin(u))du+4int_(pi/2)^(pi) ln(sin(w))dw#

#I=ln(4)pi+2I#

#I=-ln(4)pi#

A very neat result