Intrinsic equation / curvature question...?

Prove if #|psi| # is small then #kappa approx (d^2y)/(dx^2) ( 1 - 3/2 tan^2 psi ) #

1 Answer
Jul 29, 2018

For #y = y(x)#, curvature #kappa# is:

# kappa := (dpsi)/(ds) = ( y'' )/ (1+(y')^2 )^(3/2) #

# = y'' (1 + (y')^2)^(-3/2)#

By Binomial Expansion :

# = y'' (1 - 3/2(y')^2 + bbbO((y^')^3 )) #

Because:

  • #y' = tan psi#

Then:

  • #tan psi ~~psi " for " abspsi " << "1 color(blue)(implies) abs(y') " << " 1 " if " abspsi "<< "1#

So ignoring # bbbO((y^')^3 )# and higher:

  • # kappa ~~ y'' (1 - 3/2tan^2psi ) " for " abspsi " << "1#