Is #f(x) =2x^3-(x+2)(x+7)# concave or convex at #x=-8#?

1 Answer
Jan 15, 2016

Concave.

Explanation:

Convexity and concavity can be found through the second derivative:

If #f''(-8)>0#, then the function is convex when #x=-8#.
If #f''(-8)<0#, then the function is concave when #x=-8#.

To find the second derivative of the function, first simplify #f(x)#.

#f(x)=2x^3-(x^2+9x+14)#
#f(x)=2x^3-x^2-9x-14#

Now, find the second derivative.

#f'(x)=6x^2-2x-9#
#f''(x)=12x-2#

Now calculate #f''(-8)#.

#f''(-8)=12(-8)-2=-98#

Since #-98<0#, the function is concave when #x=-8#.

We can reference a graph—a concave shape should resemble the #nn# shape at #x=-8#.

graph{2x^3-(x^2+9x+14) [-10, 5, -1500, 500]}