Is #f(x)=(-3x^3+15x^2-2x+1)/(x-4)# increasing or decreasing at #x=2#?
1 Answer
decreasing at x = 2
Explanation:
To determine if a function f(x) is increasing/decreasing at x = a, evaluate f'(a).
• If f'(a) > 0 , then f(x) is increasing at x = a
• If f'(a) < 0 , then f(x) is decreasing at x = a
differentiate f(x) using the
#color(blue)"quotient rule"# If f(x)
#=g(x)/(h(x))" then" f'(x)=(h(x)g'(x)-g(x)h'(x))/(h(x)^2#
#"-------------------------------------------------------------------"#
#g(x)=-3x^3+15x^2-2x+1#
#rArrg'(x)=-9x^2+30x-2# and
#h(x)=x-4rArrh'(x)=1#
#"---------------------------------------------------------------"#
Substitute these values into f'(x)
#f'(x)=((x-4)(-9x^2+30x-2)-(-3x^3+15x^2-2x+1).1)/(x-4)^2#
#rArrf'(2)=((-2)(22)-(33))/(-2)^2=-77/4# Since f'(2) < 0 , then f(x) is decreasing at x = 2
graph{(-3x^3+15x^2-2x+1)/(x-4) [-29.65, 29.67, -14.86, 14.8]}