Is #f(x)=e^-xcos(-x)-sinx/(pi-e^x)# increasing or decreasing at #x=pi/6#?

1 Answer

#f(x)# is decreasing at #x=\pi/6#

Explanation:

Given function:

#f(x)=e^{-x}\cos(-x)-\frac{\sin x}{\pi-e^x}#

#f(x)=e^{-x}\cosx+\frac{\sin x}{e^x-\pi}#

Differentiating above function w.r.t. #x# using chain rule & quotient rule as follows

#f'(x)=d/dx(e^{-x}\cosx+\frac{\sin x}{e^x-\pi})#

#=e^{-x}(-\sinx)+\cos x(-e^{-x})+\frac{(e^x-\pi)\cos x-\sin x(e^x)}{(e^x-\pi)^2}#

#=-e^{-x}(\sinx+\cos x)+\frac{e^x(\cos x-\sin x)-\pi\cos x}{(e^x-\pi)^2}#

Setting #x=\pi/6# in above expression we get

#f'(\pi/6)#

#=-e^{-\pi/6}(\sin(\pi/6)+\cos (\pi/6))+\frac{e^{\pi/6}(\cos (\pi/6)-\sin (\pi/6))-\pi\cos (\pi/6)}{(e^{\pi/6}-\pi)^2}#

#=-0.80921-0.9953#

#=-1.8045#

Since #f'(\pi/6)<0# hence the given function #f(x)# is decreasing at #x=\pi/6#