Is the function #f(x)=x^4+3x^-4+2x^-1# even, odd or neither?

1 Answer
Oct 29, 2015

This function is neither even nor odd.

Explanation:

To find if a function is even or odd or neither we have to calculete #f(-x)# and see how it compares to #f(x)#

In this case we have:
#f(-x)=(-x)^4+3(-x)^-4+2(-x)^(-1)#

#f(-x)=x^4+3x^(-4)-2x^(-1)#

So we see that #f(-x)!=f(x)# and #f(-x)!=-f(x)#, so #f(x)# is neither even nor odd.