It is considered a rectangle with equations of 2 sides : #3x-2y-5=0#, #2x+3y+7=0# and a tip A(-2,1). How to determine #S_ABC# ?

2 Answers
Jan 3, 2018

#S_(ABC)=3" sq.unit"#.

Explanation:

Method I :

Call the rectangle in question #ABCD,# choosing the vertices in

the anti-clockwise direction.

Observe that,

(1) : The given eqns. represent #bot# **lines.

(2) : The co-ords. of the vertex #A# do not satisfy the given eqns.

In accordance of the above observations, we select,

#CD : 3x-2y-5=0, and, CB : 2x+3y+7=0#.

Since, #{C}=CDnnCB#, solving the resp. eqns., we get

#C=C(1/13,-31/13)#.

Our next target is to find #B#.

Note that, #B in BA |\| CD#.

#BA |\| CD rArr"we may suppose, "BA : 3x-2y+k=0,#

where, #k in RR-{-5}#, is to be determined.

#A=A(-2,1) in BA rArr 3(-2)-2(1)+k=0 rArr k=8#.

#:. BA : 3x-2y+8=0#.

Now, #{B}=CBnnBA,# solving the resp. eqns, we have,

#B=B(-38/13,-5/13)#.

To sum up, we have,

#A(-2,1),B(-38/13,-5/13),C(1/13,-31/13)#.

#:. S_(ABC)=1/2|d|, d=|(-2,1,1),(-38/13,-5/13,1),(1/13,-31/13,1)|#,

#=-2{-5/13-(-31/13)}-1{-38/13-1/13}+1{1178/169-(-5/169)}#,

#=-2(2)-1(-3)+1(7),#

#=-4+3+7,#

#rArr d=6#.

Finally, #S_(ABC)=1/2*6=3" sq.unit"#.

Enjoy Maths., and Spread the Joy!

Jan 3, 2018

# 3" sq.unit"#.

Explanation:

Method II :

We have, #B=B(-38/13,-5/13)#, as in Method I.

#A=A(-2,1)#. So, using the Distance Formula,

#BA^2={(-2-(-38/13))^2+(1-(-5/13)^2}#,

#=(12/13)^2+(18/13)^2=(6/13)^2(2^2+3^2)#.

# rArr BA=6/sqrt13#.

Knowing that, #DeltaABC# is right- #/_^(ed)#,

#S_(ABC)=1/2*CB*BA#, where,

#CB=DA.........................[because ABCD" is rectangle]"#,

#"="the bot-"distance from point "A" to line "CD#,

#=|3(-2)-2(1)-5|/sqrt(3^2+(-2)^2)#.

#rArr CB=sqrt13#.

#rArr S_(ABC)=1/2*sqrt13*6/sqrt13=3" sq. unit"#, as before!

Enjoy Maths., and Spread the Joy!