Use the method of "undetermined coefficients" to solve the 2nd ODE #y''-2y'=12e^(2x)-8e^(-2x)#?
1 Answer
# y(x) = A + Be^(2x) + 6xe^(2x) - e^(-2x)#
Explanation:
We have:
# y''-2y' = 12e^(2x) - 8e^(-2x) #
This is a second order linear non-Homogeneous Differentiation Equation. The standard approach is to find a solution,
Complementary Function
The homogeneous equation associated with [A] is
# y''-2y'= 0 #
And it's associated Auxiliary equation is:
# m^2-2m = 0 #
# m(m-2) = 0 #
Which has distinct real root
Thus the solution of the homogeneous equation is:
# y_c = Ae^(0x) + Be^(2x) #
# \ \ \ = A + Be^(2x) #
Particular Solution
With this particular equation [A], dur to the fact that
# y = axe^(2x) + be^(-2x) #
Where
# y' \ \ = 2axe^(2x)+ae^(2x)-2be^(-2x) #
# \ \ \ \ \ = (2ax+a)e^(2x)-2be^(-2x) #
# y'' = 2(2ax+a)e^(2x) + (2a)e^(2x)+4be^(-2x) #
# \ \ \ \ \ = (4ax+4a)e^(2x) +4be^(-2x) #
Substituting into the initial Differential Equation
# {(4ax+4a)e^(2x) +4be^(-2x)} - 2{(2ax+a)e^(2x)-2be^(-2x)} = 12e^(2x) - 8e^(-2x) #
# :. 4axe^(2x)+4ae^(2x) +4be^(-2x) - 4axe^(2x)-2ae^(2x)+4be^(-2x) = 12e^(2x) - 8e^(-2x) #
# :. 4ae^(2x) +4be^(-2x) -2ae^(2x)+4be^(-2x) = 12e^(2x) - 8e^(-2x) #
Equating coefficients of
# e^(2x) \ \ \ : 4a-2a=12 => a=6#
# e^(-2x) : 4b+4b=-8 => b=-1 #
And so we form the Particular solution:
# y_p = 6xe^(2x) - e^(-2x) #
General Solution
Which then leads to the GS of [A}
# y(x) = y_c + y_p #
# \ \ \ \ \ \ \ = A + Be^(2x) + 6xe^(2x) - e^(-2x)#