Use the method of "undetermined coefficients" to solve the 2nd ODE #y''-2y'=12e^(2x)-8e^(-2x)#?

1 Answer
Dec 29, 2017

# y(x) = A + Be^(2x) + 6xe^(2x) - e^(-2x)#

Explanation:

We have:

# y''-2y' = 12e^(2x) - 8e^(-2x) #

This is a second order linear non-Homogeneous Differentiation Equation. The standard approach is to find a solution, #y_c# of the homogeneous equation by looking at the Auxiliary Equation, which is the quadratic equation with the coefficients of the derivatives, and then finding an independent particular solution, #y_p# of the non-homogeneous equation.

Complementary Function

The homogeneous equation associated with [A] is

# y''-2y'= 0 #

And it's associated Auxiliary equation is:

# m^2-2m = 0 #
# m(m-2) = 0 #

Which has distinct real root #m=0# and #m=2#

Thus the solution of the homogeneous equation is:

# y_c = Ae^(0x) + Be^(2x) #
# \ \ \ = A + Be^(2x) #

Particular Solution

With this particular equation [A], dur to the fact that #e^(2x)# is already part of the CF then a probable solution is of the form:

# y = axe^(2x) + be^(-2x) #

Where #a,b# are constant coefficients to be determined. Let us assume the above solution works, in which case be differentiating wrt #x# we have:

# y' \ \ = 2axe^(2x)+ae^(2x)-2be^(-2x) #
# \ \ \ \ \ = (2ax+a)e^(2x)-2be^(-2x) #

# y'' = 2(2ax+a)e^(2x) + (2a)e^(2x)+4be^(-2x) #
# \ \ \ \ \ = (4ax+4a)e^(2x) +4be^(-2x) #

Substituting into the initial Differential Equation #[A]# we get:

# {(4ax+4a)e^(2x) +4be^(-2x)} - 2{(2ax+a)e^(2x)-2be^(-2x)} = 12e^(2x) - 8e^(-2x) #

# :. 4axe^(2x)+4ae^(2x) +4be^(-2x) - 4axe^(2x)-2ae^(2x)+4be^(-2x) = 12e^(2x) - 8e^(-2x) #

# :. 4ae^(2x) +4be^(-2x) -2ae^(2x)+4be^(-2x) = 12e^(2x) - 8e^(-2x) #

Equating coefficients of #e^(2x)# and #e^(-2x)# we get:

# e^(2x) \ \ \ : 4a-2a=12 => a=6#
# e^(-2x) : 4b+4b=-8 => b=-1 #

And so we form the Particular solution:

# y_p = 6xe^(2x) - e^(-2x) #

General Solution

Which then leads to the GS of [A}

# y(x) = y_c + y_p #
# \ \ \ \ \ \ \ = A + Be^(2x) + 6xe^(2x) - e^(-2x)#