We have
#sum_{i=0}^n i^3=sum_{i=0}^n (i+1)^3 - (n+1)^3#
#sum_{i=0}^n i^3=sum_{i=0}^n i^3 +3sum_{i=0}^n i^2+3sum_{i=0}^n i +sum_{i=0}^n 1- (n+1)^3#
#0 = 3sum_{i=0}^n i^2+3sum_{i=0}^n i +sum_{i=0}^n 1- (n+1)^3#
solving for #sum_{i=0}^n i^2#
#sum_{i=0}^n i^2=(n+1)^3/3-(n+1)/3-sum_{i=0}^n i#
but #sum_{i=0}^n i =((n+1)n)/2 # so
#sum_{i=0}^n i^2=(n+1)^3/3-(n+1)/3-((n+1)n)/2#
#sum_{i=0}^n i^2=1/6 n (1 + n) (1 + 2 n)#
Using the same procedure for #sum_{i=0}^n i^3#
#sum_{i=0}^n i^4=sum_{i=0}^n (i+1)^4 - (n+1)^4#
#sum_{i=0}^n i^4=sum_{i=0}^n i^4 +4sum_{i=0}^n i^3+6sum_{i=0}^n i^2 + 4sum_{i=0}^n i +sum_{i=0}^n 1- (n+1)^4#
#0 = 4sum_{i=0}^n i^3+6sum_{i=0}^n i^2 + 4sum_{i=0}^n i +sum_{i=0}^n 1- (n+1)^4#
#0=4S_3(n) + 6S_2(n)+4S_1(n)+(n+1)-(n+1)^4#
Solving for #S_3(n)#
#S_3(n)=((n+1)^4-(n+1)-6S_2(n)-4S_1(n))/4#
Here #S_k(n) = sum_{i =0}^n i^k#