Knowing the formula to the sum of the N integers a) what is the sum of the first N consecutive square integers, #Sigma_(k=1)^N k^2 = 1^2+2^2+ cdots + (N-1)^2+N^2#? b) Sum of the first N consecutive cube integers #Sigma_(k=1)^N k^3#?

1 Answer
May 31, 2016

For #S_k(n) = sum_{i =0}^n i^k#
#S_1(n) = (n(n+1))/2#
#S_2(n)=1/6 n (1 + n) (1 + 2 n)#
#S_3(n)=((n+1)^4-(n+1)-6S_2(n)-4S_1(n))/4#

Explanation:

We have

#sum_{i=0}^n i^3=sum_{i=0}^n (i+1)^3 - (n+1)^3#
#sum_{i=0}^n i^3=sum_{i=0}^n i^3 +3sum_{i=0}^n i^2+3sum_{i=0}^n i +sum_{i=0}^n 1- (n+1)^3#
#0 = 3sum_{i=0}^n i^2+3sum_{i=0}^n i +sum_{i=0}^n 1- (n+1)^3#

solving for #sum_{i=0}^n i^2#

#sum_{i=0}^n i^2=(n+1)^3/3-(n+1)/3-sum_{i=0}^n i#
but #sum_{i=0}^n i =((n+1)n)/2 # so
#sum_{i=0}^n i^2=(n+1)^3/3-(n+1)/3-((n+1)n)/2#

#sum_{i=0}^n i^2=1/6 n (1 + n) (1 + 2 n)#

Using the same procedure for #sum_{i=0}^n i^3#

#sum_{i=0}^n i^4=sum_{i=0}^n (i+1)^4 - (n+1)^4#
#sum_{i=0}^n i^4=sum_{i=0}^n i^4 +4sum_{i=0}^n i^3+6sum_{i=0}^n i^2 + 4sum_{i=0}^n i +sum_{i=0}^n 1- (n+1)^4#

#0 = 4sum_{i=0}^n i^3+6sum_{i=0}^n i^2 + 4sum_{i=0}^n i +sum_{i=0}^n 1- (n+1)^4#
#0=4S_3(n) + 6S_2(n)+4S_1(n)+(n+1)-(n+1)^4#

Solving for #S_3(n)#

#S_3(n)=((n+1)^4-(n+1)-6S_2(n)-4S_1(n))/4#

Here #S_k(n) = sum_{i =0}^n i^k#