(LARGE MULTIPLE PART QUESTION - Help with any of the parts is greatly appreciated!) The antibiotic penicillin has a thiazolidine ring in its structure. The compound thiazolidine, C3H7NS, is a molecular weak base with a pKb of 7.69?

A. What is the formula of the related conjugate acid, thiazolidinium?

B. What is the pH and %dissociation of a 0.0876Msolution of thiazolidine?

C. What is the pH and %dissociation of a 0.0543Msolution of thiazolidinium chloride, HC3H7NSCl?

D. What is the pH of a buffer solution containing both 0.0876 MC3H7NS and 0.0543M HC3H7NSCl?

2 Answers
May 3, 2018

Part A. The formula of the conjugate base is #"C"_3"H"_8"NS"^"+"#.
Part B. pH = 9.63; #α = 0.0482 %#

Explanation:

Your question is so long that I will break the answer into separate parts.

A. The formula of the conjugate base

The equation for the equilibrium is

#underbrace("C"_3"H"_7"NS")_color(red)("base") + underbrace("H"_2"O")_color(red)("acid") ⇌ underbrace("C"_3"H"_8"NS"^"+")_color(red)("conj. acid") + underbrace("OH"^"-")_color(red)("conj. base")#

The thiazolidinium ion has one more proton than thiazolidine. Its formula is #"C"_3"H"_8"NS"^"+"#.

B. pH and % dissociation of thiazolidine solution

For convenience, let's write the formula of the base as #"B"#.

Then we can write an ICE table as

#color(white)(mmmmmmmll)"B" + "H"_2"O" ⇌ "BH"^"+" + "OH"^"-"#
#"I/mol·L"^"-1": color(white)(ml)0.0876 color(white)(mmmmm)0color(white)(mmml)0#
#"C/mol·L"^"-1": color(white)(mm)"-"xcolor(white)(mmmmmll)"+"xcolor(white)(mml)"+"x#
#"E/mol·L"^"-1": color(white)(m)"0.0876-"xcolor(white)(mmmml)xcolor(white)(mmm)x#

#"p"K_text(b) = 7.69#

#K_text(b) = 10^"-7.69" = 2.04 × 10^"-8"#

#K_text(b) = (["BH"^"+"]["OH"^"-"])/(["B"]) = x^2/("0.0876-"x) = 2.04 × 10^"-8"#

Check for negligibility

#0.0876/(2.04 × 10^"-8") = 4.3 × 10^6 > 400#. ∴ #x ≪ 0.0876#

The equilibrium constant expression becomes

#x^2/0.0876 = 2.04 × 10^"-8"#

#x^2 = 0.0876 × 2.04 × 10^"-8" = 1.789 × 10^"-9"#

# x = 4.229 ×10^"-5"#

#["OH"^"-"] = xcolor(white)(l) "mol/L" = 4.229 ×10^"-5"color(white)(l)"mol/L"#

#"pOH" = "-log"["OH"^"-"] = "-log"(4.229 ×10^"-5") = 4.37#

#"pH = 14.00 - pOH = 14.00 - 4.37 = 9.63"#

#α = (["OH"^"-"])/(["B"]_0) × 100 % = (4.229 ×10^"-5")/0.0876 × 100 % = 0.0482 %#

May 3, 2018

C. pH = 3.79; #α = 0.303 %#; D. pH = 6.52

Explanation:

C. pH and % dissociation of thiazolidinium ion

Set up an ICE table.

#color(white)(mmmmmmml)"BH"^"+" + "H"_2"O" ⇌ "B" + "H"_3"O"^"+"#
#"I/mol·L"^"-1": color(white)(ml)0.0534 color(white)(mmmmmll)0color(white)(mmml)0#
#"C/mol·L"^"-1": color(white)(mm)"-"xcolor(white)(mmmmmml)"+"xcolor(white)(mml)"+"x#
#"E/mol·L"^"-1": color(white)(m)"0.0534-"xcolor(white)(mmmmm)xcolor(white)(mmm)x#

#K_text(a) = K_text(w)/K_text(b) = (1.00 ×10^"-14")/(2.04 × 10^"-8") = 4.90 × 10^"-7"#

#K_text(a) = (["B"]["H"_3"O"^"+"])/(["BH"^"+"]) = x^2/("0.0534-"x) = 4.90 × 10^"-7"#

Check for negligibility

#0.0534/(4.70 × 10^"-7") = 1.1 × 10^5 > 400#. ∴ #x ≪ 0.0534#

The equilibrium constant expression becomes

#x^2/0.0534 = 4.90 × 10^"-7"#

#x^2 = 0.0534 × 4.90 × 10^"-7" = 2.618 × 10^"-8"#

# x = 1.618 ×10^"-4"#

#["H"_3"O"^"+"] = xcolor(white)(l) "mol/L" = 1.618 ×10^"-4"color(white)(l)"mol/L"#

#"pH" = "-log"["H"_3"O"^"+"] = "-log"(1.618 ×10^"-4") = 3.79#

#α = (["H"_3"O"^"+"])/(["B"]_0) × 100 % = (1.618 ×10^"-4")/0.0534 × 100 % = 0.303 %#

Part D. pH of buffer

The equation for the equilibrium is

#color(white)(mmmmmmmll)"B" + "H"_2"O" ⇌ "BH"^"+" + "OH"^"-"#
#"E/mol·L"^"-1": color(white)(m)0.0876 color(white)(mmmll)0.0543#

The Henderson-Hasselbalch equation is

#"pOH = p"K_text(b) + log((["BH"^"+"])/(["B"]))#

#"pOH" = 7.69 + log(0.0543/0.0876) = 7.69 +log0.6199 = 7.69 - 0.208 = 7.48#

#"pH = 14.00 - pOH = 14.00 - 7.48 = 6.52"#