Let #f(x) =-2x+7# and #g(x) = -6x+3#. What is #f *g# and what is its domain?

1 Answer
Dec 26, 2015

Either #color(red)(12x+1)# or #color(blue)(12x^2-48x+21)#
depending upon interpretation of #f*g#

In either case the Domain is all Real values (#RR#)

Explanation:

Given
#color(white)("XXX")f(x)=-2x+7#
and
#color(white)("XXX")g(x)=-6x+3#

Possibility 1
If #f*g# is intended to mean #f@g# (i.e. #f(g(x))#)
then
#color(white)("XXX")(f(g(x)) = -2(g(x))+7#
#color(white)("XXXXXXXX")=-2(-6x+3)+7#
#color(white)("XXXXXXXX")=12x-6+7#
#color(white)("XXXXXXXX")=12x+1#
which is defined for all Real values of #x#
#rarr# Domain #=RR#

Possibility 2
If #f*g# is intended to mean #f xx g#
then
#color(white)("XXX")f(x)xxg(x)=(-2x+7)xx(-6x+3)#
#color(white)("XXXXXXXXXX")= 12x^2-48x+21#
which is defined for all Real values of #x#
#rarr# Domain #=RR#