Let #f(x) = x^3# and compute the Riemann sum of f over the interval [2, 3], n=2 intervals using midpoints?

1 Answer
Jun 2, 2015

Representing the interval #[2,3]# as #[a,b]#, let #\Delta x=\frac{b-a}{n}=(3-2)/2=0.5#, #x_{0}=a=2#, #x_{1}=x_{0}+\Delta x=2+0.5=2.5#, and #x_{2}=x_{1}+\Delta x=2.5+0.5=3=b#.

Now let #x_{1}^{\star}=2.25#, the midpoint of #[2,2.5]# and #x_{2}^{\star}=2.75#, the midpoint of #[2.5,3]#.

The midpoint Riemann sum approximation in this situation is then

#f(x_{1}^{\star})*\Delta x+f(x_{2}^{\star})*\Delta x=(f(2.25)+f(2.75))*0.5#

#=(2.25^3+2.75^3)*0.5=(11.390625+20.796875)*0.5=16.09375#.

Compare this with the exact answer:

#\int_{2}^{3}x^{3}\ dx=x^{4}/4 |_{x=2}^{x=3}=\frac{81-16}{4}=65/4=16.25#