Let #phi_n# be the properly-normalized nth energy eigenfunction of the harmonic oscillator, and let #psi = hatahata^(†)phi_n#. What is #psi# equal to ?
1 Answer
Consider the harmonic oscillator Hamiltonian...
#hatH = hatp^2/(2mu) + 1/2muomega^2hatx^2#
#= 1/(2mu) (hatp^2 + mu^2omega^2 hatx^2)#
Now, define the substitution:
#hatx"'" = hatxsqrt(muomega)# #" "" "" "# #hatp"'" = hatp/sqrt(muomega)#
This gives:
#hatH = 1/(2mu) (hatp"'"^2 cdot muomega + mu^2omega^2 (hatx"'"^2)/(muomega))#
#= omega/2(hatp"'"^2 + hatx"'"^2)#
Next, consider the substitution where:
#hatx"''" = (hatx"'")/sqrt(ℏ)# #" "" "" "# #hatp"''" = (hatp"'")/sqrt(ℏ)#
so that
#hatH = omega/2(hatp"''"^2cdotℏ + hatx"''"^2cdotℏ)#
#= 1/2ℏomega(hatp"''"^2 + hatx"''"^2)#
Since
#hata = (hatx"''" + ihatp"''")/sqrt2# #" "" "" "# #hata^(†) = (hatx"''" - ihatp"''")/sqrt2#
so that:
#hatahata^(†) = (hatx"''"^2 - ihatx"''"hatp"''" + ihatp"''"hatx"''" + hatp"''"^2)/2#
#= (hatx"''"^2 + hatp"''"^2)/2 + (i[hatp"''", hatx"''"])/2#
Since
#hatH = ℏomega(hatahata^(†) - 1/2)#
It can be shown that
#hatahata^(†) - hata^(†)hata = 1#
#=> hatahata^(†) = 1 + hata^(†)hata#
and so:
#color(green)(hatH = ℏomega(hata^(†)hata + 1/2))#
Here we recognize the form of the energy to be:
#E_n = ℏomega(n + 1/2)#
since it is clear from this form that with
#hatHphi_n = Ephi_n# ,
we just have that
#ℏomega(hata^(†)hata + 1/2)phi_n = ℏomega(n + 1/2)phi_n#
Thus, the number operator can be defined as:
#hatN = hata^(†)hata#
whose eigenvalue is the quantum number
Hence,
#color(blue)(psi_n = hatahata^(†)phi_n)#
#= (1 + hata^(†)hata)phi_n#
#= (1 + hatN)phi_n#
#= color(blue)((1 + n)phi_n)#