Let r=r(theta), a<=theta<=b, be a curve C given in polar coordinates. Let f(x,y) be a function. Can you derive the formula for the ∫fds over C in terms of theta then use your formula to find the arc-length of the cardiod r = 1+costheta?
1 Answer
#s = int_(theta_1)^(theta_2) sqrt(r^2 + ((dr)/(d theta))^2)d theta#
For
#s = 8# .
Like how we have
#x = rcostheta# #" "" "" "# #y = rsintheta#
DERIVING ARC LENGTH IN TERMS OF THETA
Define distance
Then, if we multiply by each
#s -= sum_i D_i ~~ sum_i sqrt((Deltax)^2/(Delta theta)^2 (Delta theta)^2 + (Deltay)^2/(Delta theta)^2 (Delta theta)^2)#
#~~ sum_i sqrt(((Deltax)/(Delta theta))^2 + ((Deltay)/(Delta theta))^2)Delta theta# where all
#Deltax_i# ,#Deltay_i# , and#Deltatheta_i# are the same for each#i# .
For infinitesimally short distances
#s = int_(theta_1)^(theta_2) sqrt(((del x)/(del theta))^2 + ((dely)/(del theta))^2)d theta#
We thus will need to
Remember that
#(delx)/(del theta) = del/(del theta)[rcos theta] = -rsintheta + costheta(dr)/(d theta)#
#(dely)/(del theta) = del/(del theta)[rsin theta] = rcostheta + sintheta(dr)/(d theta)#
Square each of these to get:
#((delx)/(del theta))^2 = r^2sin^2theta - 2rsinthetacostheta(dr)/(d theta) + ((dr)/(d theta))^2cos^2theta#
#((dely)/(del theta))^2 = r^2cos^2theta + 2rsinthetacostheta(dr)/(d theta) + ((dr)/(d theta))^2sin^2theta#
Adding these, we obtain:
#((delx)/(del theta))^2 + ((dely)/(del theta))^2#
#= r^2sin^2theta - cancel(2rsinthetacostheta(dr)/(d theta)) + ((dr)/(d theta))^2cos^2theta + r^2cos^2theta + cancel(2rsinthetacostheta(dr)/(d theta)) + ((dr)/(d theta))^2sin^2theta#
#= r^2(sin^2theta + cos^2theta) + ((dr)/(d theta))^2(sin^2theta + cos^2theta)#
#= r^2 + ((dr)/(d theta))^2#
Therefore,
#color(blue)(s = int_(theta_1)^(theta_2) sqrt(r^2 + ((dr)/(d theta))^2)d theta)#
Now we have a formula in terms of only
ARC LENGTH EXAMPLE
We now use this formula to find the arc length of
#(dr)/(d theta) = -sintheta => ((dr)/(d theta))^2 = sin^2theta#
Note that one cycle is
Therefore:
#s = 2int_(0)^(pi) sqrt((1 + costheta)^2 + sin^2theta)d theta#
#= 2int_(0)^(pi) sqrt(1 + 2costheta + cos^2theta + sin^2theta)d theta#
#= 2int_(0)^(pi) sqrt(2 + 2costheta)d theta#
#= 2sqrt2int_(0)^(pi) sqrt(1 + costheta)d theta#
To help us do this integral, recall that:
#cos^2theta = (1 + cos2theta)/2#
Therefore,
#color(blue)(s) = 2sqrt2 int_(0)^(pi) sqrt(2cos^2(theta/2))d theta#
#= 4 int_(0)^(pi) cos(theta/2)d theta#
#= 4|[2sin(theta/2)]|_(0)^(pi)#
#= 8[sin(pi/2) - sin(0/2)]#
#= color(blue)(8)#