#lim_(theta rarr 0) (sinmtheta)/(sinntheta)#? By not using l'hospital rule

1 Answer
Aug 27, 2017

# m/n#.

Explanation:

We know #lim_(x to 0) sinx/x=1..............(ast),# we have,

#"The Reqd. Lim.="lim_(theta to 0) sin(mtheta)/sin(ntheta),#

#=lim_(theta to 0){sin(mtheta)/(mtheta)m}/{sin(ntheta)/(ntheta)n}.....(1).#

We note that, by #(ast),# both the limits - in Nr., and, Dr. - exist :

#lim_(theta to 0) sin(mtheta)/(mtheta)=1............(2),#

# lim_(theta to 0) sin(ntheta)/(ntheta)=1..................(3).#

Utilising #(2), and, (3)" in "(1),# we get,

#"The Reqd. Lim.="m/n.#