With #a > 0#, making #a=e^lambda# we have
#n^2(a^(1/n)+a^(-1/n)-2) = 2lambda^2(n/lambda)^2(cosh(lambda/n)-1)=#
#=2lambda^2((cosh(lambda/n)-1)/(lambda/n)^2)# Making now
#x=lambda/n# we have
#lim_(n->oo)n^2(a^(1/n)+a^(-1/n)-2)=lim_(x->0)2lambda^2((cosh(x)-1)/x^2)#
but #cosh(x) = 1 +x^2/(2!)+x^4/(4!)+ cdots #
then
#lim_(n->oo)n^2(a^(1/n)+a^(-1/n)-2) = lambda^2#
but #lambda = log_e a# then
#lim_(n->oo)n^2(a^(1/n)+a^(-1/n)-2) =(log_e a)^2#