Given #angleDAB=60^@, angleADC=120^@#,
#=> DC# // #AB#
Let #E# be the midpoint of #AD#,
#=> AE=ED=sqrt3/2#
given #M# is the midpoint of #BC, => EM# // #DC# // #AB#
#=> angleDEM=60^@#,
and #EM=(AB+DC)/2=(2*AD)/2=(2sqrt3)/2=sqrt3#
In #DeltaEDM#, as #EM=2ED, and angleDEM=60^@#,
#=> angleEMD=30^@, => angleEDM=90^@#,
#=> DeltaEDM# is right angled at #D#,
#=> DM=EMsin60=sqrt3*sqrt3/2=3/2# units
Or if you are not sure if #DeltaEDM# is a right triangle, you can also use the law of cosines to find the length #DM#,
#DM^2=ED^2+EM^2-2*ED*EM*cos60#,
#=> DM^2=(sqrt3/2)^2+sqrt3^2-2*sqrt3/2*sqrt3*1/2#
#=> DM^2=3/4+3-3/2=9/4#
#=> DM=sqrt(9/4)=3/2# units