Points A and B are at #(2 ,4 )# and #(3 ,5 )#, respectively. Point A is rotated counterclockwise about the origin by #(3pi)/2 # and dilated about point C by a factor of #2 #. If point A is now at point B, what are the coordinates of point C?

1 Answer
Feb 2, 2018

#C=(-11,-1)#

Explanation:

#"under a counterclockwise rotation about the origin of "(3pi)/2#

#• " a point "(x,y)to(-y,x)#

#rArrA(2,4)toA'(-4,2)" where A' is the image of A"#

#rArrvec(CB)=color(red)(2)vec(CA')#

#rArrulb-ulc=2(ula'-ulc)#

#rArrulb-ulc=2ula'-2ulc#

#rArrulc=2ula'-ulb#

#color(white)(rArrulc)=2((-4),(2))-((3),(5))#

#color(white)(rArrulc)=((-8),(4))-((3),(5))=((-11),(-1))#

#rArrC=(-11,-1)#