Points A and B are at #(5 ,8 )# and #(8 ,1 )#, respectively. Point A is rotated counterclockwise about the origin by #pi # and dilated about point C by a factor of #4 #. If point A is now at point B, what are the coordinates of point C?

1 Answer
Jan 14, 2018

#C=(-40/3,-7)#

Explanation:

#"under a counterclockwise rotation about the origin of "pi#

#• " a point "(x,y)to(-x-y)#

#rArrA(5,8)toA'(-8,-5)" where A' is the image of A"#

#rArrvec(CB)=color(red)(4)vec(CA')#

#rArrulb-ulc=4(ula'-ulc)#

#rArrulb-ulc=4ula'-4ulc#

#rArr3ulc=4ula'-ulb#

#color(white)(rArrul3c)=4((-8),(-5))-((8),(1))#

#color(white)(rArrul3c)=((-32),(-20))-((8),(1))=((-40),(-21))#

#rArrulc=1/3((-40),(-21))=((-40/3),(-7))#

#rArrC=(-40/3,-7)#