Points A and B are at #(6 ,2 )# and #(3 ,8 )#, respectively. Point A is rotated counterclockwise about the origin by #pi/2 # and dilated about point C by a factor of #2 #. If point A is now at point B, what are the coordinates of point C?

2 Answers
Jul 15, 2018

#color(indigo)("Coordinates of " C((x),(y)) = ((-11),(26))#

Explanation:

#A(9,7), B(3,8), "counterclockwise rotation " #pi/2#, "dilation factor" 2#

https://teacher.desmos.com/activitybuilder/custom/566b16af914c731d06ef1953

New coordinates of A after #(3pi)/2# counterclockwise rotation

#A(9,7) rarr A' (-7,9)#

#vec (BC) = (2) vec(A'C)#

#b - c = (2)a' - (2)c#

#c = (2)a' - b#

#C((x),(y)) = (2)((-7),(9)) + ((3),(8)) = ((-11),(26))#

Jul 15, 2018

#C=(-7,4)#

Explanation:

#"under a counterclockwise rotation about the origin of "pi/2#

#• " a point "(x,y)to(-y,x)#

#A(6,2)toA'(-2,6)" where A' is the image of A "#

#vec(CB)=color(red)(2)vec(CA')#

#ulb-ulc=2(ula'-ulc)#

#ulb-ulc=2ula'-2ulc#

#ulc=2ula'-ulb#

#color(white)(ulc)=2((-2),(6))-((3),(8))#

#color(white)(ulc)=((-4),(12))-((3),(8))=((-7),(4))#

#rArrC=(-7,4)#