Points A and B are at #(6 ,7 )# and #(7 ,4 )#, respectively. Point A is rotated counterclockwise about the origin by #pi/2 # and dilated about point C by a factor of #2 #. If point A is now at point B, what are the coordinates of point C?

1 Answer
Aug 10, 2017

The coordinates of point #C=(-21,8)#

Explanation:

Point #A=((6),(7))# and point #B=((7),(4))#

The rotation of point #A# counterclockwise tranforms the point #A# into

#A'=((-7),(6))#

Let point #C=((x),(y))#

The dilatation is

#vec(CB)=2vec(CA')#

#((7),(4))-((x),(y))=2*((-7),(6))-((x),(y)))#

Therefore,

#7-x=2(-7-x)#

#7-x=-14-2x#

#x=-14-7=-21#

#4-y=2(6-y)#

#4-y=12-2y#

#y=12-4=8#

The point #C=(-21,8)#