Potential energy of electron present in #Li^(2+)# is?
-
#(-e^2)/(2piepsilon_0r)#
-
#-3/2e^2/(piepsilon_0r)#
-
#-3/4e^2/(piepsilon_0r)#
-
#-1/2e^2/(piepsilon_0r)#
-
#(-e^2)/(2piepsilon_0r)# -
#-3/2e^2/(piepsilon_0r)# -
#-3/4e^2/(piepsilon_0r)# -
#-1/2e^2/(piepsilon_0r)#
1 Answer
Nov 26, 2017
Here is the coulomb potential for a hydrogenic (one-electron) atom:
#hatV_("H-like atom") = -(Ze^2)/(4piepsilon_0vecr)# where:
#Z# is the atomic number.#e# is the elementary charge,#1.602 xx 10^(-19) "C/particle"# . The force of attraction for the nucleus with the electron is included in#hatV# already, since#overbrace(-e)^("electron") cdot overbrace(Ze)^"protons" = -Ze^2# .#epsilon_0 = 8.854 xx 10^(-12) "F"cdot"m"^(-1)# is the vacuum permittivity.#vecr# is the radial distance of the electron from the nucleus.
We assume under the Born-Oppenheimer approximation that the nucleus can be treated as nearly stationary, so that the net charge of it is
You know the atomic number of
#color(blue)(hatV_("Li"^(2+)) = -(3e^2)/(4piepsilon_0vecr))#