Prove that #limxlnx# = 0 as x approaches positive 0, given that #lim(lnx)/x# = 0 as x approaches positive infinity?
1 Answer
Jun 23, 2017
We are given that:
# lim_(x rarr oo) lnx/x= 0 #
Let
Substituting into the above limit we get:
# lim_(u rarr 0^+) u ln(1/u)= 0 #
# :. lim_(u rarr 0^+) u ln(u^(-1))= 0 #
# :. lim_(u rarr 0^+) -u lnu= 0 #
# :. lim_(u rarr 0^+) u lnu= 0 # QED