Prove that #limxlnx# = 0 as x approaches positive 0, given that #lim(lnx)/x# = 0 as x approaches positive infinity?

1 Answer
Jun 23, 2017

We are given that:

# lim_(x rarr oo) lnx/x= 0 #

Let #u=1/x# then as #x rarr oo => u rarr 0^+#

Substituting into the above limit we get:

# lim_(u rarr 0^+) u ln(1/u)= 0 #

# :. lim_(u rarr 0^+) u ln(u^(-1))= 0 #

# :. lim_(u rarr 0^+) -u lnu= 0 #

# :. lim_(u rarr 0^+) u lnu= 0 # QED