Prove that #sina+ sinb+ sinc- sin(a+b+c)= 4sin((a+b)/2) sin((b+c)/2) sin((c+a)/2)# ?

1 Answer
May 25, 2018

Explanation:

#LHS=sina+ sinb+ sinc- sin(a+b+c)#

#=sina+ sinb+ sinc- sin((a+b+c)#

#=2sin((a+b)/2)cos((a-b)/2)- 2cos((a+b+2c)/2)sin((a+b)/2)]#

#=2sin((a+b)/2)[cos((a-b)/2)- cos((a+b+2c)/2)]#

#=2sin((a+b)/2)xx2sin((a+b+2c)/4-(a-b)/4)sin((a+b+2c)/4+(a-b)/4)#

#= 4sin((a+b)/2) sin((b+c)/2) sin((c+a)/2)=RHS#