Prove that tan(π/4+A)tan(3π/4+A)=-1?
1 Answer
Jun 12, 2018
We seek tro show:
# tan(pi/4+A)tan((3pi)/4+A) -= -1 #
Using the tangent sum of angle formula:
# tan(A+B) -= (tanA + tanB)/(1-tanAtanB) #
In conjunction with:
# tan(pi/4) = 1# and# tan((3pi)/4) = -1#
Then by considering the LHS of the given expression, we have:
# LHS = tan(pi/4+A)tan((3pi)/4+A) #
# \ \ \ \ \ \ \ \ = (tan(pi/4) + tanA)/(1-tan(pi/4)tanA) \ * \ (tan((3pi)/4) + tanA)/(1-tan((3pi)/4)tanA) #
# \ \ \ \ \ \ \ \ = (1 + tanA)/(1-tanA) \ * \ (-1 + tanA)/(1+tanA) #
# \ \ \ \ \ \ \ \ = - (1 + tanA)/(1-tanA) \ * \ (1 - tanA)/(1+tanA) #
# \ \ \ \ \ \ \ \ = - 1 #
# \ \ \ \ \ \ \ \ -= RHS \ \ \ \ # QED