Prove that the number #(sqrt(2)+sqrt(17)-sqrt(19))# is irrational?

2 Answers
Feb 23, 2018

Here's a proof based on the rational roots theorem...

Explanation:

Consider the octic polynomial with zeros:

#sigma_1sqrt(2)+sigma_2sqrt(17)+sigma_3sqrt(19)#

where #sigma_1, sigma_2, sigma_3 in { 1, -1 }#

We find:

#(x+sigma_1sqrt(2)+sigma_2sqrt(17)-sqrt(19))(x+sigma_1sqrt(2)+sigma_2sqrt(17)+sqrt(19))#

#=(x+sigma_1sqrt(2)+sigma_2sqrt(17))^2-19#

#=(x^2+2sigma_1sqrt(2)x)+sigma_2(2sqrt(17)x+2sigma_1 sqrt(34))#

Then:

#((x^2+2sigma_1sqrt(2)x)-(2sqrt(17)x+2sigma_1 sqrt(34)))((x^2+2sigma_1sqrt(2)x)+(2sqrt(17)x+2sigma_1 sqrt(34)))#

#=(x^2+2sigma_1sqrt(2)x)^2-(2sqrt(17)x+2sigma_1 sqrt(34))^2#

#=x^4+4sigma_1sqrt(2)x^3+8x^2-68x^2-136sigma_1sqrt(2)x-136#

#=(x^4-60x^2-136)+sigma_1(4sqrt(2)x^3-136sqrt(2)x)#

Then:

#((x^4-60x^2-136)-(4sqrt(2)x^3-136sqrt(2)x))((x^4-60x^2-136)+(4sqrt(2)x^3-136sqrt(2)x))#

#=(x^4-60x^2-136)^2-(4sqrt(2)x^3-136sqrt(2)x)^2#

#=x^8-152x^6+5504x^4-20672x^2+18496#

By the rational roots theorem, any rational zero of this octic is expressible in the form #p/q# for integers #p, q# where #p# is a divisor of the constant term #18496# and #q# a divisor of the coefficient #1# of the leading term.

That means that the only possible rational zeros are the integer factors of #18496#.

Now #sqrt(2)+sqrt(17)-sqrt(19) ~~ 1.414+4.123-4.359 ~~ 1.178#

Since this is not an integer, it is not a rational zero of the octic.

Feb 23, 2018

Alternative proof using the irrationality of #sqrt(2)#...

Explanation:

Suppose:

#sqrt(2)+sqrt(17)-sqrt(19) = c#

Then:

#sqrt(2)+sqrt(17)-c = sqrt(19)#

Square both sides to get:

#19+2sqrt(34)-2csqrt(2)-2csqrt(17)+c^2 = 19#

Subtract #19# from both sides to get:

#2sqrt(34)-2csqrt(2)-2csqrt(17)+c^2 = 0#

That is:

#(2sqrt(2)-2c)sqrt(17) = 2csqrt(2)-c^2#

So:

#sqrt(17) = (2csqrt(2)-c^2)/(2sqrt(2)-2c)#

Square both side to get:

#17 = (8c^2-4sqrt(2)c^3+c^4)/(8-8sqrt(2)c+4c^2)#

Multiply both sides by #(8-8sqrt(2)c+4c^2)# to get:

#136-136sqrt(2)c+68c^2 = 8c^2-4sqrt(2)c^3+c^4#

So:

#(4c^3-136c)sqrt(2) = c^4-60c^2-136#

So:

#sqrt(2) = (c^4-60c^2-136)/(4c^3-136c)#

Now we know that #sqrt(2)# is irrational, so #c# must be irrational too.