# Ques 5 calculate the determinant of A?

Then teach the underlying concepts
Don't copy without citing sources
preview
?

#### Explanation

Explain in detail...

#### Explanation:

I want someone to double check my answer

2
Jim G. Share
Mar 8, 2018

$| A | = 51$

#### Explanation:

$\text{given a 2 by 2 matrix}$

$A = \left(\begin{matrix}a & b \\ c & d\end{matrix}\right)$

$\text{then the determinant of A is } a d - b c$

$A = \left(\begin{matrix}2 & - 9 \\ 5 & 3\end{matrix}\right)$

$\Rightarrow a d - b c = \left(2 \times 3\right) - \left(- 9 \times 5\right) = 51$

Then teach the underlying concepts
Don't copy without citing sources
preview
?

#### Explanation

Explain in detail...

#### Explanation:

I want someone to double check my answer

2
sjc Share
Mar 8, 2018

$51$

#### Explanation:

if

$A = \left(\begin{matrix}a & b \\ c & d\end{matrix}\right)$

$\det A = | \left(a , b\right) , \left(c , d\right) | = a d - b c$

we have

$A = \left(\begin{matrix}2 & - 9 \\ 5 & 3\end{matrix}\right)$

$\det A = | \left(2 , - 9\right) , \left(5 , 3\right) |$

$\det A = 2 \times 3 - \left(5 \times - 9\right)$

$\det A = 6 - - 45$

$\det A = 6 + 45 = 51$

• 16 minutes ago
• 16 minutes ago
• 16 minutes ago
• 16 minutes ago
• 4 minutes ago
• 6 minutes ago
• 8 minutes ago
• 11 minutes ago
• 15 minutes ago
• 16 minutes ago
• 16 minutes ago
• 16 minutes ago
• 16 minutes ago
• 16 minutes ago