Show that #1/2log9+2log6+1/4log81-log12=3log3#?
3 Answers
See explanation...
Explanation:
If
#log ab = log a + log b#
and
#log (a/b) = log a - log b#
Hence:
#log a^n = n log a" "# for any integer#n > 0#
So we find:
#1/2 log 9 + 2 log 6 + 1/4 log 81 - log 12#
#=1/2 log 3^2 + 1/4 log 3^4 + log 6^2 - log 12#
#=1/2 (2 log 3) + 1/4 (4 log 3) + log (36/12)#
#= log 3 + log 3 + log 3#
#= 3 log 3#
Explanation:
#"using the "color(blue)"laws of logarithms"#
#•color(white)(x)logx^nhArrnlogx#
#•color(white)(x)logx+logyhArrlog(xy)#
#•color(white)(x)logx-logy=log(x/y)#
#"consider left side"#
#=log9^(1/2)+log6^2+log81^(1/4)-log12#
#=log3+log36+log3-log12#
#=log((3xx36xx3)/12)#
#=log27#
#=log3^3=3log3#
Please see the explanation below in the explanation section.
Explanation:
Be familiar with some Rules of Logarithm:
Now lets see the original equation:
Step 1:
Lets simplify each term now.
First term:
Second Term
Third Term
Fourth Term
Step 2:
Add all Terms:
Hence, we have proved that:
Hope all steps are understood. Cheers!