Show that #lim_(x to +oo)f'(x)=0# ?

Given #f# differentiable in #RR# with #f(x)!=0# #AAx##in##RR#. If #lim_(x to +oo)f(x)# exists then show that #lim_(x to +oo)f'(x)=0#

1 Answer
Jan 25, 2018

See below.

Explanation:

Solved it.

#lim_(xto+oo)f(x)##in##RR#

Supposed #lim_(xto+oo)f(x)=λ#

then #lim_(xto+oo)f(x)=lim_(xto+oo)(e^xf(x))/e^x#

We have #((+-oo)/(+oo))# and #f# is differentiable in #RR# so applying Rules De L'Hospital:

#lim_(xto+oo)(e^xf(x))/e^x=#

#lim_(xto+oo)(e^xf(x)+e^xf'(x))/e^x=#

#lim_(xto+oo)((e^xf(x))/e^x+(e^xf'(x))/e^x)=#

#lim_(xto+oo)[f(x)+f'(x)]# #=λ#

  • #h(x)=f(x)+f'(x)# with #lim_(xto+oo)h(x)=λ#

Thus, #f'(x)=h(x)-f(x)#

Therefore, #lim_(xto+oo)f'(x)=lim_(xto+oo)[h(x)-f(x)]#

#=λ-λ=0#

As a result,

#lim_(xto+oo)f'(x)=0#